李志敏
发布时间:2016-10-19   访问次数:23076


李志敏


生物工程专业:博士生导师/硕士生导师

生物化工专业:博士生导师/硕士生导师

生物与医药专业(生物工程领域):博士生导师/硕士生导师


 

    工学博士,教授,博导。生物反应器工程国家重点实验室固定研究人员。近年来以第一作者或通讯作者在ACS Catalysis, Metabolic Engineering, Journal of Agricultural and Food Chemistry, Biotechnology and Bioengineering, ACS Synthetic Biology, Bioresource Technology, Biomass and Bioenergy, Journal of Biotechnology, Microbial Cell Factories, Applied Microbiology and Biotechnology等期刊上发表SCI收录论文多篇。承担和参与了多项科技部“863”项目、上海市科技创新行动计划、国家合成生物学重点研发计划等,同时与国内生物技术企业建立了紧密的产学研合作关系。

 

主要研究方向:

生物化工,发酵工程,代谢工程,微生物生理和代谢调控,合成生物学

可再生的生物质资源,是资源、能源和环境领域关注的热点和焦点,其循环利用是社会和经济可持续发展的必然方向;将可再生资源转化为大宗、必需的燃料和化学品,是近年来绿色先进制造和资源替代的重要研究方向。本课题组以生物质资源和微生物资源为对象,以生物基化学品、酶和生理活性物质为产品,主要从事生物质资源循环利用、发酵过程优化与放大、生物基化学品合成和生物催化研究。针对当前生物基化学品和生物活性物质等生物制造过程的主要瓶颈问题,利用代谢工程和合成生物学理念,改造、构建和优化微生物代谢网络,并运用发酵工程理论,进行工艺过程的调控和优化,建立生物制造新路线,实现资源有效和循环利用。具体方向包括:

1.  平台化合物和生物活性物质的生物制造和体外生物合成技术。

2.  非粮废弃资源(乙酸、CO2等)循环高效利用。

3.   常规和基因工程微生物的代谢调控、发酵过程优化、放大及与培养过程相适应的生物反应器工程研究。

 

教育经历:

19917                 毕业于我校,生物化工专业,学士;

20017                 毕业于我校,生物化工专业,博士;

 

研究工作经历:

20027-20046     中国科学院上海生命科学院生化与细胞所,博士后;

20046-20072     我校生物反应器工程国家重点实验室,16877太阳集团;

20072-20091     华盛顿州立大学生物系统工程系,博士后;

20163-20172     德国亚琛工业大学,访问学者;

20091月至今                 我校生物反应器工程国家重点实验室,16877太阳集团;

 

在研项目:

生物合成谷胱甘肽研究

大肠杆菌代谢工程研究

多酶组合型催化体系研究

谷氨酸棒杆菌代谢工程研究

酿酒酵母代谢工程研究

微生物发酵优化放大

 

近五年发表的代表性论文:

1.   Wang W, Yang JG, Sun YX*, Li ZM*, You C*. 2020. Novel ATP-free in vitro Synthetic Enzymatic Biosystems Facilitate Asymmetric C-C Bond Formation for Biomanufacturing. ACS Catalysis. 12: 1264-1271.

2.   Liu H, Hou YH, Wang Y, Li ZM*. 2020. Enhancement of sulfur conversion rate in the production of L-cysteine by engineered Escherichia coli. Journal of Agricultural and Food Chemistry. 68, 1: 250-257.

3.   Zhang X, Cui XW, Shen S, Li ZM*. 2020. Engineering of supramolecular nanoreactors by assembly of multiple enzymes for ATP regeneration in vitro. Biochemical Engineering Journal. 155: 107487.

4.   Zhang X, Cui XW, Li ZM*. 2020. Characterization of Two Polyphosphate Kinase 2 Enzymes 1 Used for ATP Synthesis. Applied Biochemistry and Biotechnology,

5.   Yang K, Li ZM*. 2020. Multistep construction of metabolically engineered Escherichia coli for enhanced cytidine biosynthesis. Biochemical Engineering Journal. 154: 107433.

6.   Huang B, Fang GC, Sun JB,, Wu H, Li ZM*, Ye Q. 2019. Efficient Biosynthesis of Succinate from Paper Mill Wastewater by Engineered Escherichia coli. Applied Biochemistry and Biotechnology.

7.   Wang W, Meng DD, Li Q, Li ZM*, You C. 2019. Characterization of a hyperthermophilic phosphatase from Archaeoglobus fulgidus and its application in in vitro synthetic enzymatic biosystem. Bioresour. Bioprocess., 6:

8.   Shen S, Zhang X, Li ZM*. 2019. Development of an engineered carbamoyl phosphate synthetase with released sensitivity to feedback inhibition by site-directed mutation and casting error-prone PCR. Enzyme and Microbial Technology, 129.

9.   Cui XW, Wan JX, Zhang X, Wu H, Huang B, Li ZM*, Ye Q. 2019. Efficient glutathione production in metabolically engineered Escherichia coli strains using constitutive promoters. Journal of Biotechnology. 289: 39-45.

10.  Jiang JQ, Huang B, Wu H*, Li ZM*, Ye Q. 2018. Efficient 3-hydroxypropionic acid production from glycerol by metabolically engineered Klebsiella pneumoniae. Bioresour. Bioprocess., 5:34-43.

11.   Liu H, Fang GC, Wu H*, Li ZM*, Ye Q. 2018. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy. Biotechnol. J, 13, 1700695.

12.   Huang B, Yang H, Fang GC, Zhang X, Wu H*, Li ZM*, Ye Q. 2018. Central pathway engineering for enhanced succinate biosynthesis from acetate in Escherichia coli. Biotechnology and Bioengineering, 115: 943-954.

13.  Wang W, Liu MX, You C, Li ZM*, Zhang YHP*. 2017. ATP-free biosynthesis of a high-energy phosphate metabolite fructose 1,6-diphosphate by in vitro metabolic engineering. Metabolic Engineering 42: 168–174.

14.   Wang RW, Yang J, Zhang GQ, Chao YP*, Li ZM*, Ye Q, Qian SJ. 2017. Co-expression of Beta-Glucosidase and Laccase in Trichoderma reesei by Random Insertion with Enhanced Filter Paper Activity. Molecular Biotechnology. 59(8): 353-364.

15.   Zhang X, H Wu, Huang B, ZM Li*, Q Ye. 2017. One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system. Journal of Biotechnology. 214:63-68.

16.   Cheng Z, Jiang JQ, Wu H, Li ZM*, Ye Q. 2016. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. Bioresource Technology. 200: 897-904.

17.   Kou FY, J Zhao, J Liu, J Shen, Ye Q, P Zheng, Li ZM*, JB Sun*, YH Ma. 2016. Characterization of a new lysine decarboxylase from Aliivibrio salmonicida for cadaverine production at alkaline pH. DOI: 10.1016/j.molcatb.2016.11.023

18.   Li YJ, Huang B, Wu H*, Li ZM*, Ye Q and Zhang Y-HP. 2016. Production of Succinate from Acetate by Metabolically Engineered Escherichia coli. ACS Synthetic Biology. DOI: 10.1021/acssynbio.6b00052.

19.   Yang JH, Li W, Wang DZ, Wu H*, Li ZM*, Ye Q. 2016. Characterization of bifunctional L-glutathione synthetases from Actinobacillus pleuropneumoniae and Actinobacillus succinogenes for efficient glutathione biosynthesis. Applied Microbiology and Biotechnology. 100: 6279-6289.

20.   Zhang J, Quan C, Wang C, Wu H*, Li ZM*, Ye Q. 2016. Systematic manipulation of glutathione metabolism in Escherichia coli for improved glutathione production. Microbial Cell Factories. 15:38.

21.   Wang DZ, Wang C, Wu H*, Li ZM*, Ye Q. 2016. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase. Journal of Industrial Microbiology and Biotechnology. 43:45-53.

22.   Huang YN, Li ZM* and Ye Q*. 2016. Transcriptional Regulation of Genes Involved in 3-Hydroxypropionic Acid Production in Response to Aeration of Recombinant Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 2016,178: 1129–1140.

23.   Ye Q*, Li ZM, Wu H. 2016. Principle and performance of gas self-inducing reactors and applications to biotechnology. Advances in Biochemical Engineering/Biotechnology. 152:1-33.

24.   Wang C, Zhang J, Wu H*, Li ZM*, Ye Q. 2015. Heterologous gshF gene expression in various vector systems in Escherichia coli for enhanced glutathione production. Journal of Biotechnology. 214:63-68.


联系方式:

上海市梅陇路130283信箱(实验十八楼803室),邮编200237

电话:021-64252095O);

Email: lizm@ecust.edu.cn


 
Baidu
sogou